REACTION OF 2-ARYL-5-R-5,6-DIHYDRO-7H-[1,2,4]-TRIAZOLO[5,1-*b*][1,3]THIAZIN-7-ONES WITH ARYL BROMOMETHYL KETONES AND BENZYL BROMIDE

V. N. Britsun, A. N. Esipenko, and M. O. Lozinskii

The products of the reaction of 2-aryl-5-R-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones with aryl bromomethyl ketones are 2-aryl-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones and aryl methyl ketones or 2,5-diaryl[1,3]thiazolo[3,2-b][1,2,4]triazoles and 3-phenyl-2-propenoic acid, depending on the structure of R. The reaction of 2-aryl-5-R-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones with benzyl bromide yields 5-aryl-3-benzylthio-4H-1,2,4-triazoles and 3-aryl-2-propenoyl bromide.

Keywords: aryl bromomethyl ketones, 2-aryl-5-R-5,6-dihydro-7H-[1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-ones, 2-aryl-7H-[1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-ones, benzyl bromide, 3-benzylsulfanil-5-aryl-4H-1,2,4-triazoles, 2,5-diaryl[1,3]thiazolo[3,2-*b*][1,2,4]triazoles, 3-phenyl-2-propenoic acid, recyclization.

We have recently proposed a new method for the synthesis of 2,5-diaryl-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones involving the condensation of 3-aryl-4,5-dihydro-1H-1,2,4-triazole-5-thiones with 3-aryl-2-propenoyl chlorides [1,2]. Ali and Soliman [3] have reported the preparation of 2-aryl-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones by heating 3-(5-aryl-4H-1,2,4-triazol-3-ylsulfanil)-propanoic acids with acetic anhydride and the reactions of these [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones with nucleophilic reagents such as amines and hydrazine. In the present work, we have investigated the reactions of 2,5-diaryl-5,6-dihydro-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones described by Ali and Soliman [3] with aryl bromomethyl ketones and benzyl bromide, which were used in light of their high reactivity and thermal stability.

We have found that 5,6-dihydro-7H-[1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-ones **1a-g** react with aryl bromomethyl ketones **2a,b** under vigorous conditions (fusion at 150-200°C). The direction of this reaction depends on the structure of substituent R in **1a-g**. When R = H, dehydrogenation of [1,2,4]triazolo[5,1-*b*]-[1,3]thiazin-7-ones **1a-c** occurs leading to 2-aryl-7H-[1,2,4]-triazolo[5,1-*b*][1,3]thiazin-7-ones **3a-c** and aryl methyl ketones **4a,b**. On the other hand, when R = Ph, thiazinones **1d-g** recyclize at 150°C to give 2-Ar¹-5-Ar²-[1,3]thiazolo[3,2-*b*][1,2,4]triazoles **5a-e** as well cinnamic acid (**6**) (Scheme 1).

Benzyl bromide 7 does not react with [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones **1a-c** even at 200°C, while this bromide reacts with [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones **1d-f** already at 150°C. The products of this reaction are 3-benzylthio-5-aryl-4H-1,2,4-triazoles **8a-c** and 3-phenyl-2-propenoyl bromide (**9**) (Scheme 2).

The yields, melting points, and elemental analysis data of the reaction products are given in Table 1. 2-Phenyl-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one (**3a**) was previously obtained by the cyclization of 3-(5-phenyl-4H-1,2,4-triazol-3-ylsulfanil)-2-propenoic acid in the presence of thionyl chloride [4], while

0009-3122/05/4106-0782©2005 Springer Science+Business Media, Inc.

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 02094 Kiev, Ukraine. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 905-909, June, 2005. Original article submitted April 1, 2004.

1a,d, 3a, 5a $Ar^1 = Ph$, **1b,f, 3b, 5c** $Ar^1 = p$ -ClC₆H₄, **1c,g, 3c, 5d** $Ar^1 = p$ -FC₆H₄, **1e, 5b,e** $Ar^1 = p$ -MeOC₆H₄; **2a, 4a, 5a-d** $Ar^2 = Ph$, **2b, 4b, 5e** $Ar^2 = p$ -ClC₆H₄; **1a-c, 3a-c** R = H, **1d-g, 6** R = Ph

Scheme 2

8 a $Ar^{1} = Ph$, b $Ar^{1} = p-ClC_{6}H_{4}$, c $Ar^{1} = p-MeOC_{6}H_{4}$

[1,3]thiazolo[3,2-b][1,2,4]triazoles **5a-c,e** have been synthesized by heating 1-aryl-2-(5-aryl-4H-1,2,4-triazol-3-ylsulfanil)-1-ethanones in absolute ethanol at reflux [5] or in the thermal decomposition of 4-aryl-2-(5-aryl-1H-1,2,3,4-tetrazol-1-yl)-1,3-thiazoles [6]. Since the compounds described by Potts [5] and Ramachandraiah [6] were not characterized by spectral methods, we found it necessary to give the ¹H NMR and IR spectral data of the compounds synthesized in the present work (Table 2).

The reaction temperatures indicate the relative stability of the 1,3-thiazine ring in the starting [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones lacking a substituent at C₍₅₎ (**1a-c**, R = H) and with a phenyl substituent at this position (**1d-g**). Thiazinones **1d-f** react with aryl methyl ketones **2a**,**b** at 150°C, while thiazinones **1a-c** react with these ketones only at 200°C.

In all likelihood, the alkylation of [1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones **1a-c** and **1d-g** initially occurs at S₍₄₎ with formation of unstable sulfonium salt **A**, which loses a proton and converts to intermediate **B**.

Then, the direction of the decomposition of **B** depends on the structure of substituent R at $C_{(5)}$. If R = H, intermediate **B** probably transforms into [1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-one **3** and aryl methyl ketone **4**. On the other hand, if R = Ph, the S– $C_{(5)}$ is cleaved, and the amide of 3-aryl-2-propenoic acid **C** may possibly be formed, which then likely is converted into [1,3]thiazolo[3,2-*b*][1,2,4]triazole **5** and 3-phenyl-2-propenoic acid **6**.

TABLE 1. Characteristics of Synthesized Compounds

Com-	Empirical formula	Found, %			mp °C	Yield %
pound		С	H	N	mp, e	11010, 70
3a	C ₁₁ H ₇ N ₃ OS	<u>57.47</u> 57.63	<u>3.31</u> 3.08	$\frac{18.10}{18.33}$	260-262 264-266 [4]	35
3b	C ₁₁ H ₆ ClN ₃ OS	$\frac{50.32}{50.10}$	$\frac{2.20}{2.29}$	$\frac{16.22}{15.93}$	268-270	37
3c	C ₁₁ H ₆ FN ₃ OS	<u>53.67</u> 53.44	$\frac{2.69}{2.45}$	$\frac{17.29}{17.00}$	250-252	33
4 a	C ₈ H ₈ O	<u>79.70</u> 79.97	<u>6.49</u> 6.71	_	17-18 20-20.5 [7]	45
4b	C ₈ H ₇ ClO	<u>62.31</u> 62.15	$\frac{4.33}{4.56}$	—	16-18 20 [8]	42
5a	$C_{16}H_{11}N_3S$	<u>69.58</u> 69.29	<u>4.29</u> 4.00	<u>15.39</u> 15.15	135-137 137-139 [5, 6]	43
5b	$\mathrm{C}_{17}\mathrm{H}_{13}\mathrm{N}_{3}\mathrm{OS}$	<u>66.76</u> 66.43	$\frac{4.41}{4.26}$	$\tfrac{13.45}{13.67}$	140-141 153 [6]	40
5c	$C_{16}H_{10}ClN_3S$	<u>61.78</u> 61.64	$\frac{3.46}{3.23}$	$\frac{13.19}{13.48}$	150-152 158 [6]	39
5d	$C_{16}H_{10}FN_3S$	$\tfrac{65.29}{65.07}$	$\frac{3.70}{3.41}$	$\frac{13.94}{14.23}$	138-140	45
5e	C ₁₇ H ₁₂ ClN ₃ OS	<u>59.96</u> 59.74	<u>3.70</u> 3.54	<u>12.57</u> 12.29	170-172 171 [6]	41
6	$C_9H_8O_2$	<u>72.71</u> 72.96	<u>5.31</u> 5.44	—	131-133 135 [9]	50
8a	$C_{15}H_{13}N_3S$	$\frac{67.61}{67.39}$	$\frac{4.61}{4.90}$	$\frac{15.43}{15.72}$	78-80	45
8b	$C_{15}H_{12}ClN_3S$	<u>59.52</u> 59.70	$\frac{4.31}{4.01}$	$\frac{13.81}{13.92}$	115-117	42
8c	$C_{16}H_{15}N_3OS$	$\frac{64.33}{64.62}$	$\frac{4.81}{5.08}$	<u>13.85</u> 14.13	87-89	40
9	C ₉ H ₇ BrO	$\frac{51.51}{51.22}$	$\frac{3.07}{3.34}$		39-40 43 [10]	38

Com- pound*	IR spectrum, v, cm ⁻¹	¹ H NMR spectrum, δ , ppm. (<i>J</i> , Hz)
3a	_	6.99 (1H, d, <i>J</i> = 9.5, H-6); 7.57 (3H, m, C ₆ H ₅); 8.17 (2H, m, C ₆ H ₅); 8.38 (1H, d, <i>J</i> = 9.5, H-5)
3b	3050, 1700 (C=O), 1605 C=N), 1560, 1520, 1480, 1410, 1370, 1310	6.99 (1H, d, J = 9.4, H-6); 7.61 (2H, d, J = 7.6, m -H _{Ar}); 8.16 (2H, d, J = 7.6, o -H _{Ar}); 8.42 (1H, d, J = 9.4, H-5)
3c	3050, 1700 (C=O), 1620 C=N), 1560, 1490, 1450, 1420, 1370	6.99 (1H, d, <i>J</i> = 9.6, H-6); 7.40 (2H, m, <i>m</i> -H _{Ar}); 8.19 (2H, m, <i>o</i> -H _{Ar}); 8.42 (1H, d, <i>J</i> = 9.6, H-5)
5a	3100, 1610, 1550, 1500, 1480, 1460, 1400, 1330, 1300, 1290	7.45-7.59 (6H, m, H _{At}); 7.96 (1H, s, H-6); 8.16 (2H, m, H _{Ar}); 8.32 (2H, m, H _{Ar})
5b	3100, 2830, 1620, 1590, 1530, 1500, 1470, 1430, 1320, 1310	3.82 (3H, s, CH ₃ O); 7.07 (2H, d, $J = 8.9$, m -H _{Ar}); 7.59 (3H, m, H _{Ar}); 7.90 (1H, s, H-6); 8.07 (2H, d, $J = 8.9$, o -H _{Ar}); 8.28 (2H, m, H _{Ar})
5c	3100, 3050, 1600, 1550, 1500, 1470, 1450, 1410, 1320	7.61 (5H, m, H_{Ar}); 7.96 (1H, s, H-6); 8.09 (2H, d, $J = 9.0$, $o-H_{Ar}$); 8.29 (2H, m, H_{Ar})
5d	3100, 1610, 1530, 1500, 1470, 1420, 1320, 1280, 1230	7.40 (2H, m, H_{Ar}); 7.64 (3H, m, H_{Ar}); 7.95 (1H, s, H-6); 8.16 (2H, m, H_{Ar}); 8.30 (2H, m, H_{Ar})
5e	3050, 1610, 1580, 1530, 1500, 1470, 1430, 1320, 1310, 1270	3.84 (3H, s, CH ₃ O); 7.11 (2H, d, $J = 8.4$, m -H _{Ar}); 7.70 (2H, d, $J = 8.1$, m -H _{Ar}); 7.99 (1H, s, H-6); 8.09 (2H, d, $J = 8.4$, o -H _{Ar}); 8.36 (2H, d, $J = 8.1$, o -H _{Ar})
8b	3000, 1620, 1500, 1460, 1410, 1340, 1280	4.44 (2H, s, SCH ₂); 7.28-7.68 (7H, m, H_{Ar}); 7.99 (2H, d, $J = 9.1$, $o-H_{Ar}$)
8c	3000, 1610, 1590, 1510, 1460, 1410, 1350, 1300, 1270	3.80 (3H, s, CH ₃ O); 4.40 (2H, s, SCH ₂); 7.09 (2H, d, <i>J</i> = 8.9, <i>m</i> -H _{Ar}); 7.31 (3H, m, C ₆ H ₅); 7.42 (2H, m, C ₆ H ₅); 7.89 (2H, d, <i>J</i> = 8.9, <i>o</i> -H _{Ar})

TABLE 2. IR and ¹H NMR Spectral Data of Products

* The IR spectrum of **3a** corresponds to the spectrum reported by Heindel [4]. The IR and ¹H NMR spectra of **8a** correspond to the spectra given by Barbier et al. [11].

We note that, in both cases, reaction products **3a-c** and **5a-e** contain aromatic heterocyclic systems, while starting compounds **1a-g** have a single thiazole ring. This is evidence of the greater chemical and thermodynamic stability of heteroaromatic compounds in comparison with alicyclic heterocycles.

EXPERIMENTAL

The ¹H NMR spectra were taken on a Varian 300 spectrometer at 300 MHz for solutions in DMSO-d₆ with TMS as the internal standard. The IR spectra were taken for KBr pellets on a UR-20 spectrometer.

2-Aryl-7H-[1,2,4]triazolo[5,1-b][1,3]thiazin-7-ones 3a-c and Aryl Methyl Ketones 4a,b. A mixture of 2-aryl[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one 1a-c (10 mmol) and aryl bromomethyl ketones 2a or 2b (10 mmol) was heated for 4 min at 200°C and then cooled. The reaction mixture was extracted with three 7-ml ether portions. The precipitate of 3a-c was filtered off, dried, and recrystallized from acetic acid. The ethereal extract containing ketone 4a or 4b was evaporated and the resultant oil was extracted with three 5-ml hot hexane portions. Hexane was evaporated and 4a or 4b was distilled in vacuum. The yields and physical constants of 3a-c, 4a,b are given in Table 1.

2,5-Diaryl[1,3]thiazolo[3,2-b][1,2,4]triazolo[5,1-b][1,3]-triazoles 5a-e and 3-Phenyl-2-propenoic Acid (6). A mixture of 2,5-diaryl[1,2,4]triazolo[5,1-b][1,3]thiazin-7-one 1d-g and aryl bromomethyl ketone 2a or 2b (10 mmol) was heated for 7 min at 150°C and cooled. The reaction mixture was treated with three 10-ml

portions of 10% aq. sodium bicarbonate. Products **5a-e**, which are insoluble in the sodium bicarbonate solution, were filtered off and recrystallized from acetic acid. The aqueous sodium bicarbonate solution containing acid **6** was acidified by adding concentrated hydrochloric acid and maintained for 6 h in the cold. Cinnamic acid **6** was filtered off, dried, and recrystallized from 4:1 aqueous ethanol.

5-Aryl-3-benzylthio-4H-1,2,4-triazoles 8a-c and 3-Phenyl-2-propenoyl Bromide (9). A mixture of 2,5-diaryl[1,2,4]triazolo[5,1-*b*][1,3]thiazin-7-one **1d-f** (10 mmol) and benzyl bromide 7 (11 mmol) was heated for 10 min at 150°C and cooled. The reaction mixture was extracted with three 10-ml dry ether portions. The insoluble residue of **8a-c** was filtered off, dried, and recrystallized from ethanol. The ethereal extracts were combined and evaporated to yield bromide **9**.

REFERENCES

- 1. V. N. Britsun, V. V. Pirozhenko, and M. O. Lozinskii, Zh. Org. Khim., 37, 1102 (2001).
- 2. V. N. Britsun and M. O. Lozinskii, Khim. Geterotsikl. Soedin., 1256 (2004).
- 3. M. I. Ali and A. A. Soliman, J. Prakt. Chem., 325, 869 (1993).
- 4. N. D. Heindel and J. R. Reid, J. Org. Chem., 45, 2479 (1980).
- 5. K. T. Potts and S. Husain, J. Org. Chem., 36, 10 (1971).
- 6. G. Ramachandraiah and K. K. Reddy, Indian J. Chem., Sect. B, 24(B), 808 (1985).
- 7. Beilstein, 7, 271 (1925).
- 8. Beilstein, 7, 281 (1925).
- 9. Beilstein, 9, 225 (1932).
- 10. Beilstein, 9, 233 (1932).
- 11. F. Malbec, R. Milcent, and G. Barbier, J. Heterocycl. Chem., 21, 1689 (1984).